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1 Introduction

It is of great interest to understand the low-energy behavior of asymptotically free gauge

theories. Analyzing such theories in the strong-coupling regime is generally quite diffi-

cult, but can become tractable with a sufficient amount of symmetry. Strongly-coupled

gauge theories with N = 1 supersymmetry are particularly interesting in that they are

both amenable to analysis and potentially relevant for phenomenology. Possible appli-

cations include dynamical supersymmetry breaking [1–3], conformal sequestering [4, 5],

dynamical solutions to the µ/Bµ-problem [6–8], dynamical explanations of the flavor hi-

erarchies [9–11], dynamical solutions to the doublet-triplet splitting problem [12–14], and

so on.

When analyzing a supersymmetric gauge theory, a first-order question is to determine

what kind of phase the theory flows to at low energies. Possibilities include that the theory

is infrared (IR) free, the theory flows to an interacting conformal (non-Abelian Coulomb)

phase, the theory has a ’dual’ description that is IR free, the theory confines, the theory

dynamically generates a superpotential that breaks the gauge group, or that the theory

enters a pure Abelian Coulomb phase (see [15, 16] for reviews). In addition, it is possible

that the theory enters a ’mixed phase’ consisting of decoupled sectors that are in some

combination of the above phases. This can occur, e.g., when the theory is in an interacting

conformal regime but some set of operators have become free fields and decoupled from

the CFT. More exotically, the theory could have a dual description containing a product

gauge group in which one gauge group is interacting and one gauge group is IR free. This

was argued to occur, e.g., in SU(Nc) gauge theories with an anti-symmetric tensor [17, 18].

An important tool for studying theories in a conformal regime, a-maximization, was

introduced by Intriligator and Wecht in [19], and further developed in [20–22]. The idea is

that the correct superconformal U(1)R symmetry can be determined by maximizing

a(Rt) =
3

32

[
3TrR3

t − TrRt

]
(1.1)

– 1 –
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over all possible trial R-symmetries Rt = R0+
∑

I sIFI , where R0 is any initial R-symmetry

and FI are the IR flavor symmetries. This is an extremely powerful technique provided

that one understands the IR flavor symmetries. Unfortunately, one cannot always identify

the IR flavor symmetries as a subset of the UV flavor symmetries – accidental symmetries

can arise (see, e.g., [23] for a number of interesting examples).

How can one gain evidence for accidental symmetries? One way is to check whether

there are any gauge-invariant operators in the chiral ring of the theory that violate the

unitarity bound, given by RO ≥ 2/3 for scalar operators [24]. If this bound appears to be

violated, then one plausible interpretation is that O is becoming a free field with RO = 2/3.

In this case there is an accidental symmetry associated with rotations of O, and one must

include this symmetry when maximizing a(Rt). In practice, this requires one to instead

maximize [20, 25]

ã(Rt) = a(Rt) +
dim(O)

96
(2 − 3RO)2 (5 − 3RO) . (1.2)

However, not all accidental symmetries manifest themselves through apparent viola-

tions of unitarity. This happens for example in SU(Nc) gauge theories with Nf flavors of

vector-like quarks {Q̄,Q} in the range Nc + 1 < Nf < 3/2Nc [26]. Since the anomaly-free

U(1)R symmetry is RQ̄,Q = 1 − Nc/Nf , the mesons Q̄Q appear to violate the unitarity

bound in this range and presumably become free fields. However, this is only part of

the story, as it is also believed that the entire dual SU(Nf − Nc) gauge group and the

corresponding dual quarks are also becoming free fields, yielding many more accidental

symmetries. This is not obvious in the original ’electric’ description of the theory, but be-

comes apparent when the dual ’magnetic’ description is analyzed. When studying similar

theories, it is clearly of great interest to have dual descriptions available that can be studied,

as they may contain evidence for the emergence of non-obvious accidental IR symmetries.

In the present work we will use a-maximization to study N = 1 supersymmetric

Sp(2Nc) gauge theory with 2Nf fundamentals Qi and an adjoint A. While the theory

with superpotential W = A2(k+1) is fairly well understood [27], the theory with vanishing

superpotential has not been as easy to analyze. An attempt to study this theory using

’deconfinement’ [28] was made in [29], where it was proposed that the theory has a sequence

of dual descriptions, the first of which is based on an Sp(2Nf + 2) × SO(2Nc + 5) gauge

theory. However, because the U(1)R symmetry of the theory was unknown it was not

possible to determine which operators, if any, gave apparent violations of the unitarity

bound as one varies Nf and Nc. Furthermore, it was not possible to explicitly check the

dual descriptions for evidence of additional accidental symmetries, as would occur if either

of the dual gauge groups were becoming free. As we will see, such an analysis is now

possible using a-maximization, and we will here present an attempt to map out the phase

structure of the theory. Similar studies of other theories have appeared in [18, 20, 30–33].

This paper is organized as follows. In section 2 we use a-maximization to study Sp(2Nc)

gauge theory with an adjoint. In sections 3 and 4 we perform a similar analysis of the first

two dual descriptions of the theory, comparing the results and looking for evidence of

accidental IR symmetries. We give concluding remarks in section 5.

– 2 –
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SU(2Nc) SU(2Nf ) U(1)X U(1)′R
Qi

Nc+1
Nf

1

A 1 -1 0

Table 1. Field content of the theory.

2 Sp(2Nc) gauge theory with an adjoint

We are interested in studying N = 1 supersymmetric Sp(2Nc) gauge theory1 with 2Nf

fundamentals Qi and an adjoint A. The field content and anomaly-free symmetries are

given in table 1. In particular, we are here interested in the theory with vanishing su-

perpotential. It is believed that this theory is in an interacting conformal regime for all

0 < Nf < 2(Nc + 1).

The chiral ring of this theory contains the gauge-invariant operators

Tk ≡ TrA2k, k = 1, 2, . . .

Mk ≡ QAkQ, k = 0, 1, . . . (2.1)

As mentioned in the introduction, this theory was previously studied using ’deconfinement’

in [29], where it was conjectured that the operators Mk sequentially become free fields as

Nf is decreased from the asymptotic freedom limit of Nf = 2(Nc + 1) while the Tk remain

interacting. It was also noted in [31] that the large Nc, Nf ≫ 1 limit of this theory will

yield the same R-charges as SU(Nc) gauge theory with Nf flavors and an adjoint, which

was studied in [20]. Here we will attempt to map out the phase space allowing for smaller

Nf and Nc, comparing our results to the conjectures of [29]. In particular, we will find that

both the operators Ti and Mi sequentially become free fields as Nf is decreased, with the

precise order depending on the value of Nc. This realizes the behavior that was described

as scenario C in [29], and thus we will prove that the conjectured behavior (scenario A)

is incorrect.

In order to determine the U(1)R symmetry of the theory, we should maximize a(Rt)

subject to the constraint that the mixed Tr[U(1)RSp(2Nc)
2] anomalies vanish. Recall that

an adjoint of Sp(2Nc) is a two-index symmetric tensor with index (2Nc +2) and dimension

Nc(2Nc + 1). Anomaly cancellation then requires

0 = (2Nc + 2) + 2Nf (RQ − 1) + (2Nc + 2)(RA − 1), (2.2)

or equivalently

RQ = 1 −
(

Nc + 1

Nf

)
RA. (2.3)

1Our conventions are such that Sp(2) ∼ SU(2).

– 3 –
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In order to determine the R-symmetry, we should then maximize

a(RA) =
3

32

[
2Nc(2Nc + 1) + 4NfNc

(
3

(
−Nc + 1

Nf

RA

)3

−
(
−Nc + 1

Nf

RA

))

+ Nc(2Nc + 1)
(
3(RA − 1)3 − (RA − 1)

)
]
. (2.4)

The correct solution to da/dRA = 0 is then given by

RA =
−3(1 + 2Nc)N

2
f +

√
16(1 + Nc)3(3 + 5Nc)N2

f − (3 + 4Nc(2 + Nc))N4
f

12(1 + Nc)3 − 3(1 + 2Nc)N
2
f

, (2.5)

where the positive root of the quadratic equation is picked out by requiring that this be

a maximum.

Now we can ask the question of which gauge-invariant operator is the first to violate

the unitarity bound as we lower Nf from 2(Nc + 1). It is straightforward to solve the

condition RT1
≤ 2/3 for Nf . This gives the condition that the operator T1 is at or below

the unitarity bound when

Nf ≤ 2(Nc + 1)

√
1 + Nc

7 + 10Nc

. (2.6)

On the other hand, we should check that M0 does not hit the unitarity bound first. The

condition RM0
≤ 2/3 is equivalent to

Nf ≤ 2(Nc + 1)

(
3 + 6Nc −

√
13 + 40Nc + 28N2

c

4 + 8Nc

)
, (2.7)

which is less than 2(Nc + 1)
√

1+Nc

7+10Nc
for positive Nc. Thus, RM0

> 2/3 within the en-

tire region

2(Nc + 1)

√
1 + Nc

7 + 10Nc
< Nf < 2(Nc + 1). (2.8)

When Nf is below this threshold we assume that T1 becomes a free field, and we should

modify the a-maximization procedure according to the prescription given in [20]. Thus, we

should now maximize the function

a2(RA) = a(RA) +
1

96
(2 − 6RA)2(5 − 6RA). (2.9)

Again solving da2/dRA = 0 yields the the solution

RA =
(
12Nc(1 + Nc)

3 − 3(−8 + Nc + 2N2
c )N2

f

)−1

[
− 3(−4 + Nc + 2N2

c )N2
f (2.10)

+
√

16(1 + Nc)3(−4 + Nc(3 + 5Nc))N2
f + (16 + Nc(40 + Nc(45 − 4Nc(2 + Nc))))N4

f

]
,

– 4 –
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where the positive root is again picked out by requiring that this be a maximum.

Now that we know the R-symmetry in this region, we can determine which operator

is next to hit the unitarity bound. It is straightforward to show that the condition that

RT2
≤ 2/3 is equivalent to

Nf ≤ 2(Nc + 1)

√
Nc(1 + Nc)

−24 + Nc(37 + 58Nc)
. (2.11)

This should be compared to the condition for RM0
≤ 2/3, which occurs when

Nf ≤ 2(Nc + 1)

(
−12 + 3Nc + 6N2

c −
√

16 + Nc(−88 + Nc(−67 + 4Nc(10 + 7Nc)))

4(−8 + Nc + 2N2
c )

)
.(2.12)

It is then easily verified that RM0
> 2/3 in the entire region

2(Nc + 1)

√
Nc(1 + Nc)

−24 + Nc(37 + 58Nc)
< Nf ≤ 2(Nc + 1)

√
1 + Nc

7 + 10Nc
. (2.13)

Below this threshold we can repeat the procedure, treating T2 as a free field,

and maximize

a3(RA) = a2(RA) +
1

96
(2 − 12RA)2(5 − 12RA). (2.14)

Solving da3/dRA = 0 then yields the maximum

RA =
(
12Nc(1 + Nc)

3 − 3(−72 + Nc + 2N2
c )N2

f

)−1
[
−3(−20 + Nc + 2N2

c )N2
f (2.15)

+
√

16(1+Nc)3(−12+Nc(3+5Nc))N
2
f +(144+Nc(522+Nc(813−4Nc(2+Nc))))N

4
f

]
.

Now we find that RT3
≤ 2/3 when

Nf ≤ 2(Nc + 1)

√
Nc(1 + Nc)

−144 + Nc(91 + 146Nc)
, (2.16)

and RM0
≤ 2/3 when

Nf ≤2(Nc + 1)

(
−60 + 3Nc + 6N2

c −
√

144 + Nc(−600 + Nc(−323 + 4Nc(10 + 7Nc)))

4(−72 + Nc + 2N2
c )

)
.

(2.17)

The structure this time is somewhat more complicated. If Nc ≤ 28 then T3 gives the

stronger bound, and if Nc > 28 then M0 gives the stronger bound. However, over a wide

range of Nc the difference between these functions is . 1, and M0 and T3 hit the unitarity

bound at approximately the same values of Nf . In any case, since we are here primarily

interested in mapping out the phase structure for smaller values of Nc and Nf , we will first

consider the case that T3 decouples at the larger value of Nf .

– 5 –
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Treating T3 as a free field below the threshold in eq. (2.16), we should now maximize

a4(RA) = a3(RA) +
1

96
(2 − 18RA)2(5 − 18RA), (2.18)

which gives

RA =
(
12Nc(1 + Nc)

3 − 3(−288 + Nc + 2N2
c )N2

f

)−1
[
−3(−56 + Nc + 2N2

c )N2
f (2.19)

+
√

16(1+Nc)3(−24+Nc(3+5Nc))N
2
f +(576+Nc(2544+Nc(3933−4Nc(2+Nc))))N

4
f

]
.

We can then determine that RT4
≤ 2/3 when

Nf ≤ 2(Nc + 1)

√
Nc(1 + Nc)

−480 + Nc(169 + 274Nc)
(2.20)

and RM0
≤ 2/3 when

Nf ≤2(Nc + 1)

(
−168+3Nc+6N2

c −
√

576+Nc(−2064 + Nc(−659+4Nc(10+7Nc)))

4(−288 + Nc + 2N2
c )

)
.

(2.21)

Comparing these functions, we find that M0 decouples at the larger value of Nf for all

8 < Nc ≤ 28. On the other hand, if Nc ≤ 8, then the bound is only potentially applicable

for Nf = 1. Thus, M0 is the next operator to decouple except in the special case of Nf = 1,

and this decoupling occurs when Nf is below the threshold given in eq. (2.21).

As an immediate check on the results obtained so far, we can expand eqs. (2.17)

and (2.21) in the limit of large Nc. Since the effect of decoupling Ti can be neglected

in this limit, they should agree up to terms of O(1/Nc). In addition, as was noted in [31],

the resulting bound on Nf below which M0 becomes free should reproduce the results

of [20]. We find these checks to be successful. In the large Nc limit we obtain that M0

becomes a free field when

Nf ≤
(

3 −
√

7

2

)
Nc +

(
3

2
− 17

4
√

7

)
+ O (1/Nc) , (2.22)

which does indeed agree with [20] at leading order.

Of course, one can continue this procedure indefinitely. On the other hand, if one is

primarily interested in smaller values of Nc and Nf , the region of interest is quickly filled in.

In figure 1 we show an approximate phase space diagram for the theory including the next

several decoupling thresholds (though we will suppress the analytic expressions). Since the

case of Nf = 1 is somewhat more complicated, we give its structure separately in table 2.

3 First deconfined dual description

One potential danger with the analysis presented in the previous section is that it may

be overlooking non-obvious accidental symmetries that may emerge due to the strong

– 6 –
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Theory IR Free

All Fields Interacting

T1 Free

T2 Free

T3 Free M0 Free
T4 Free

M1 Free
T5 Free

5 10 15 20 25

5

10

15

20

25

Nc

N
f

Figure 1. Phase space diagram for Sp(2Nc) with 2Nf fundamentals and an adjoint with vanishing

superpotential.

Nc 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

O T1 T2 T3 T4 M0 T5 T6 M1 T7 T8 M2 T9

Table 2. The values of Nc in the Nf = 1 case for which the operators Ti and Mi first become free

fields.

dynamics. This happens, e.g., in SU(Nc) gauge theories with Nf flavors in the range

Nc + 1 < Nf < 3/2Nc. In that situation, there are accidental symmetries associated with

the dual quarks and SU(Nf − Nc) gauge bosons becoming free fields in the IR. This is

manifest when the theory is studied in the dual magnetic description, but completely non-

obvious in the electric description. Thus, it is great interest to study dual descriptions of

the present scenario in order to look for evidence for a similar scenario.

Fortunately, this theory in fact has a sequence of dual descriptions that can be stud-

ied [29]. The dualities are obtained via ’deconfinement’, and involve promoting the adjoint

A to a composite state in a strongly-coupled SO(N ′
c) theory. The first dual description

is then obtained by taking N ′
c = 2Nc + 5 and dualizing the original Sp(2Nc) gauge group

using the known duality for Sp(2Nc) gauge groups with only fundamentals [34]. The end

result of this procedure is given in table 3. In addition, the theory has a superpotential

W = M0Q̃Q̃ + A1x̃1x̃1 + m1Q̃x̃1 + m2Q̃p̃2 + (x̃1p̃2)(x̃1p̃2)p3, (3.1)

and the mapping between the gauge-invariant operators in the original and dual description

– 7 –
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Sp(2Nf + 2) SO(2Nc + 5) SU(2Nf ) U(1)X U(1)′R
Q̃ 1 −Nc+1

Nf
0

M0 1 1 2Nc+1
Nf

2

x̃1 1 1
2 1

A1 1 1 −1 0

m1 1 Nc+1
Nf

− 1
2 1

m2 1 1 Nc+1
Nf

+ 1
2 − Nc 5

p̃2 1 1 −1
2 + Nc -3

p3 1 1 1 −2Nc 6

Table 3. Field content of the dual theory.

is given by

TrA2k → TrA2k
1

QQ → M0

QAkQ → m1A
k−1
1 m1, k ≥ 1. (3.2)

Now, if one just considers the one-loop beta function it näıvely seems that the SO(2Nc +5)

gauge group is IR free for Nf ≥ Nc+1. However, this is misleading because, e.g., the strong

Sp(2Nf +2) gauge group gives a large anomalous dimension to the bi-fundamental x̃1, which

in turn gives an O(1) correction to the full SO(2Nc + 5) beta function. This is an example

of a larger class of RG flows in product group theories (see [31, 35] for many examples) in

which an otherwise IR free coupling can be driven to be interacting because of the other

gauge group.

Thus, we will proceed by assuming that the full theory is interacting, again using a-

maximization to decide if any fields become free. In particular, we should require that

the U(1)R symmetry is anomaly free with respect to both gauge groups, i.e. that both the

Tr[U(1)RSp(2Nf + 2)2] and Tr[U(1)RSO(2Nc + 5)2] anomalies vanish. Furthermore, we

will start by assuming that the full superpotential in eq. (3.1) is marginal. Notice that

anomaly cancellation and the superpotential together give 7 constraints on 8 unknown

U(1)R charges, causing adual(Ri) to again be a function of a single variable as in the

previous section.

More concretely, the constraints are

0 = (2Nf + 4) + 2Nf (R eQ
− 1) + (2Nc + 5)(Rex1

− 1) + (Rep2
− 1)

0 = (2Nc + 3) + (2Nf + 2)(Rex1
− 1) + (2Nf )(Rm1

− 1) + (2Nc + 3)(RA1
− 1)

2 = RM0
+ 2R eQ

2 = RA1
+ 2Rex1

2 = Rm1
+ R eQ

+ Rex1

2 = Rm2
+ R eQ

+ Rep2

2 = 2Rex1
+ 2Rep2

+ Rp3
. (3.3)

– 8 –
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These linear equations can be solved to express all of the R-charges in terms of RA1
, yielding

R eQ
=

1 + Nc

Nf

RA1

RM0
= 2 − 2

1 + Nc

Nf

RA1

Rex1
= 1 − 1

2
RA1

Rm1
= 1 +

Nf − 2(1 + Nc)

2Nf

RA1

Rm2
= 5 − Nf + 2 − 2Nc(Nf − 1)

2Nf

RA1

Rep2
= −3 +

1 − 2Nc

2
RA1

Rp3
= 6 + 2NcRA1

. (3.4)

Equivalently, we could have obtained these expressions simply by considering the linear

combination Ri = R′
i −RA1

Xi, where Xi and R′
i are the U(1)X and U(1)′R charges of each

field as given in table 3.

In order to determine RA1
we should then maximize the function

adual(RA1
) =

3

32

[
2(Nf + 1)(2Nf + 3) + 2(Nc + 2)(2Nc + 5)

+(Nc + 2)(2Nc + 5)
(
3(RA1

− 1)3 − (RA1
− 1)

)

+(2Nf + 2)(2Nf )

(
3

(
1 + Nc

Nf

RA1
− 1

)3

−
(

1 + Nc

Nf

RA1
− 1

))

+(Nf )(2Nf − 1)

(
3

(
1 − 2

1 + Nc

Nf

RA1

)3

−
(

1 − 2
1 + Nc

Nf

RA1

))

+(2Nf + 2)(2Nc + 5)

(
3

(
−1

2
RA1

)3

−
(
−1

2
RA1

))

+(2Nc + 5)(2Nf )

(
3

(
Nf − 2(1 + Nc)

2Nf

RA1

)3

−
(

Nf − 2(1 + Nc)

2Nf

RA1

))

+(2Nf )

(
3

(
4−Nf +2−2Nc(Nf −1)

2Nf

RA1

)3

−
(

4−Nf +2−2Nc(Nf −1)

2Nf

RA1

))

+(2Nf + 2)

(
3

(
−4 +

1 − 2Nc

2
RA1

)3

−
(
−4 +

1 − 2Nc

2
RA1

))

+
(
3(5 + 2NcRA1

)3 − (5 + 2NcRA1
)
)
]
. (3.5)

Remarkably, the solution to dadual/dRA1
= 0 corresponding to the maximum is

RA1
=

−3(1 + 2Nc)N
2
f +

√
16(1 + Nc)3(3 + 5Nc)N2

f − (3 + 4Nc(2 + Nc))N4
f

12(1 + Nc)3 − 3(1 + 2Nc)N
2
f

, (3.6)

– 9 –
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which coincides exactly with eq. (2.5)! Moreover, the function eq. (3.5) is precisely equal

to eq. (2.4). Of course, one may view this as a consequence of the fact that the ’t Hooft

anomalies of the dual description were designed to match those of the original theory.

Nevertheless, we can perhaps view this agreement as a non-trivial check of the dynami-

cal assumptions that both gauge groups are interacting and that the full superpotential

eq. (3.1) is marginal, at least for the values of Nf that do not lead to violations of the

unitarity bound.

Since the function adual(RA1
) is the same as before, the operators TrAk

1 hit the unitarity

bound at the same thresholds as before. In particular, TrA2
1 becomes a free field for

Nf ≤ 2(Nc + 1)
√

1+Nc

7+10Nc
. Below this threshold we can maximize

adual
2 (RA1

) = adual(RA1
) +

1

96
(2 − 6RA1

)2(5 − 6RA1
). (3.7)

This then yields the same result as eq. (2.10). The precise agreement between the dual

description and the original description then continues, with TrA4
1 becoming free at the

threshold given in eq. (2.11) and TrA6
1 becoming free at the threshold given in eq. (2.16)

(for Nc ≤ 28).

Now, one might worry that the situation changes when M0 violates the unitarity

bound and becomes a free field. This occurs either below the threshold given in eq. (2.17)

or eq. (2.21), depending on the value of Nc (or at Nf = 1 for Nc = 8). When this

happens, the superpotential term M0Q̃Q̃ must be flowing to zero, since this is M0’s only

interaction. In addition, for Nf just above this threshold, we know that R eQ
≈ 2/3 due to the

superpotential interaction. A possible interpretation of this is that the Sp(2Nf + 2) gauge

group is becoming free. Under this interpretation, the coupling is flowing to zero because

unitarity is now enforcing the condition that R eQ
> 2/3. Note that in this case one would

still expect the SO(2Nc + 5) gauge group to be strongly coupled. If this interpretation

is correct, this would be similar to the mixed phase argued to exist in SU(Nc) gauge

theories with an anti-symmetric tensor [17, 18]. In addition, there would be accidental

symmetries emerging that would invalidate the a-maximization analysis performed in the

electric description of the theory.

However, we will now argue that this scenario cannot be correct. To do this we will

consider the sign of the Sp(2Nf + 2) β-function in the hypothetical mixed phase. As

mentioned above, since we are assuming that Sp(2Nf + 2) is becoming free we must now

have R eQ
> 2/3 and Rep2

> 2/3 by unitarity, and thus we know that the couplings m2Q̃p̃2

and (x̃1p̃2)(x̃1p̃2)p3 must also become irrelevant. The interacting sector of the theory then

simply consists of the fields {x̃1, A1,m1, Q̃}, with superpotential

Wmixed = A1x̃1x̃1 + m1Q̃x̃1. (3.8)

Now, in order for this scenario to be plausible the Sp(2Nf + 2) β-function should

be positive so that the gSp → 0 fixed point is IR attractive. This then requires that

Tr[U(1)RSp(2Nf + 2)2] < 0, or more explicitly

(2Nf + 4) + (2Nf )(R eQ
− 1) + (2Nc + 5)(Rex1

− 1) + (2/3 − 1) < 0. (3.9)
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Because the superpotential and anomaly cancellation constraints lead to the same

parametrization of the R-charges (for the interacting fields) as was given in eq. (3.4), this

condition is equivalent to

RA1
< −2

3

(
11

2Nc − 1

)
. (3.10)

Since we expect the theory to have RA1
> 0 so as to avoid an infinite number of free

operators, this bound will never be satisfied. For example, in the limit of large Nc we obtain

RA1
≃

√
5

3

Nf

Nc
+ O(1/N2

c ), (3.11)

and the full calculation gives qualitatively similar results. Note that it can be also verified

that no subset of the couplings in eq. 3.8 leads to an IR stable fixed point. Thus, we

conclude that gSp → 0 is not an IR attractive fixed point in the hypothetical mixed phase,

and that both gauge groups must remain interacting even after M0 becomes free.2

4 Second deconfined dual description

Now we will consider the second dual description constructed in [29], which can be obtained

by treating the anti-symmetric tensor A1 as a meson of a confining Sp(2Nc+2) gauge theory,

and then dualizing the SO(2Nc +5) gauge group using the known duality for SO(N) gauge

theories with fundamentals [26, 37]. The field content (after integrating out massive fields)

is given in table 4. In addition, the theory has the superpotential

W = M0(˜̃x1m̃1)(˜̃x1m̃1) + (˜̃x1x̃2)(˜̃x1x̃2) + m2p̃2(˜̃x1m̃1) + n1p̃
2
2p3

+n1
˜̃x1
˜̃x1 + A2x̃2x̃2 + M1m̃1m̃1 + n3r̃2r̃2

+n2x̃2m̃1 + n4
˜̃x1r̃2 + n5m̃1r̃2, (4.1)

and the gauge-invariant operators of the electric theory match onto the operators

TrA2k → TrA2k
2

QQ → M0

QAQ → M1

QAkQ → n2A
k−2
2 n2, k ≥ 2. (4.2)

We can again begin by assuming that each of the Sp(2Nf +2)×SO(4Nf +4)×Sp(2Nc +2)

gauge groups are interacting and that the entire superpotential in eq. 4.1 is marginal. This

gives 3 constraints from anomaly cancellation and 11 constraints from the superpotential

on 15 unknown R-charges, causing adual2(Ri) to again be a function of a single variable

2It is also interesting to note that entering the hypothetical mixed phase would have required violating

the (stronger) conjecture of ref. [36] that operators with R > 5/3 cannot become free fields, since Rp3
> 6

in the interacting scenario.

– 11 –



J
H
E
P
1
1
(
2
0
0
9
)
0
4
9

Sp(2Nf + 2) SO(4Nf + 4) Sp(2Nc + 2) SU(2Nf ) U(1) U(1)′R
M0 1 1 1 2Nc+1

Nf
2

˜̃x1 1 1 −1
2 0

n1 1 1 1 1 2

x̃2 1 1 1
2 1

A2 1 1 1 −1 0

m̃1 1 1 1
2 − Nc+1

Nf
0

M1 1 1 1 2Nc+1
Nf

− 1 2

n2 1 1 Nc+1
Nf

− 1 1

n3 1 1 1 1 −2Nc − 4 0

n4 1 1 1 −Nc − 3
2 1

n5 1 1 1 Nc+1
Nf

− 5
2 − Nc 1

m2 1 1 1 Nc+1
Nf

+ 1
2 − Nc 5

p̃2 1 1 1 −1
2 + Nc -3

p3 1 1 1 1 −2Nc 6

r̃2 1 1 1 Nc + 2 1

Table 4. Field content of the second dual description.

(as expected). The R-charges of each field are then easily obtained in terms of RA2
by

considering the linear combination

Ri[RA2
] = R′

i − XiRA2
, (4.3)

where R′
i and Xi are the U(1)′R and U(1)X charges given in table 4. Alternatively, this

parametrization could be obtained by using the 14 constraints to solve for the 15 unknown

R-charges in terms RA2
, as we did in the previous section.

It is then straightforward to verify that the function

adual2(RA2
) =

3

32

[
2(Nf + 1)(2Nf + 3) + 2(2Nf + 2)(4Nf + 3) + 2(Nc + 1)(2Nc + 3)

+
∑

i

dimOi

(
3(Ri[RA2

] − 1)3 − (Ri[RA2
] − 1)

)
]

(4.4)

is exactly equal to the functions given in eqs. (2.4) and (3.5). In particular, maximizing it

gives rise to the same U(1)R symmetry as was found in the previous sections. Furthermore,

the operators TrAk
2 become free fields at the same thresholds as before as we lower Nf

from 2(Nc + 1).3

3It is perhaps worrisome that the gauge-invariant operator n4ep2 appears to badly violate the unitarity

bound, since it has Rn4 ep2
= −2 + 2RA2

. However, if the duality is to be believed, non-perturbative effects

in this description should cause this operator to be zero in the chiral ring in order to avoid a contradiction.
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When the operator M0 hits the unitarity bound we assume that the coupling

M0(˜̃x1m̃1)(˜̃x1m̃1) is simply flowing to zero so that M0 can become a free field. Note that

this is unlikely be the result of the SO(4Nf + 4) gauge coupling flowing to zero because

this would also force M1 to be a free field and one would expect that RM1
≈ 2/3 close to

this threshold, which is not the case. Furthermore, the Sp(2Nc +2) gauge group going free

would not cause this operator to become irrelevant.

Thus we first consider the possibility that, similar to the hypothetical mixed phase

considered in the previous section, the Sp(2Nf +2) gauge group is becoming free when M0

hits the unitarity bound. If this is the case, unitarity requires that Rn1
, Rn4

, Rep2
> 2/3

and forces the couplings m2p̃2(˜̃x1m̃1) and n1p̃
2
2p3 to become irrelevant. The interacting

superpotential of the mixed phase then becomes

Wmixed = (˜̃x1x̃2)(˜̃x1x̃2) + n1
˜̃x1
˜̃x1 + A2x̃2x̃2 + M1m̃1m̃1

+ n3r̃2r̃2 + n2x̃2m̃1 + n4
˜̃x1r̃2 + n5m̃1r̃2, (4.5)

along with the free fields {M0,m2, p̃2, p3} and potentially free operators TrA2k
2 .

The superpotential combined with anomaly cancellation then give 10 constraints on

11 unknown R-charges, with the same parametrization for the R-charges of the interacting

fields as in eq. 4.3. However, again we can rewrite the condition that Tr[U(1)RSp(2Nf +

2)2] < 0 as

RA2
< −2

3

(
11

2Nc − 1

)
, (4.6)

and this scenario is disfavored for the same reason as in first dual. It is straightforward

to additionally verify that no subset of the couplings in eq. 4.5 lead to an IR attractive

fixed point.

Next we would like to investigate the possibility that when M1 becomes a free field the

SO(4Nf + 4) gauge coupling is flowing to zero. Note that in this case unitarity is forcing

the M1m̃1m̃1 coupling to become irrelevant. To see if this is plausible we can again attempt

to determine the U(1)R symmetry of the hypothetical mixed phase and check the sign of

the SO(4Nf + 4) β-function.

If it is correct that the SO(4Nf +4) gauge coupling flows to zero, unitarity also requires

that Rer2
> 2/3 in addition to R em1

> 2/3. These conditions imply that the couplings

m2p̃2(˜̃x1m̃1), n3r̃2r̃2, and n5m̃1r̃2 should become irrelevant, and thus it is reasonable to

assume that the interacting superpotential becomes

Wmixed = (˜̃x1x̃2)(˜̃x1x̃2) + n1p̃
2
2p3 + n1

˜̃x1
˜̃x1 + A2x̃2x̃2 + n2x̃2m̃1 + n4

˜̃x1r̃2, (4.7)

along with the free fields {M0,M1, n3, n5,m2} and potentially free operators TrA2k
2 . Since

we now have 8 constraints and 10 unknown R-charges, a(Ri) will be a function of 2 variables

and is best maximized numerically. Doing this, however, we find that the function has no

stable maximum and thus the fixed point does not exist.

If we turn off one additional coupling, we find that the only IR stable choice is to

assume that (˜̃x1x̃2)(˜̃x1x̃2) is flowing to zero — i.e., only this operator has R > 2 in the

– 13 –
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Figure 2. Tr[U(1)RSO(4Nf + 4)2] as a function of Nf in the large Nc limit of the hypothetical

mixed phase. Because it is always positive the SO(4Nf + 4) gauge coupling can not flow to zero

and the mixed phase does not exist.

hypothetical CFT in which it is absent from the superpotential. However, in this case one

can then check that Tr[U(1)RSO(4Nf +4)] > 0 for all Nc and Nf , and hence the assumption

that gSO → 0 is not correct. To illustrate this, in figure 2 we plot Tr[U(1)RSO(4Nf + 4)2]

as a function of Nf in the limit of large Nc. We have also checked that no subset of these

couplings leads to an IR stable fixed point. We thus do not find any evidence for a mixed

phase in this description of the theory.

5 Conclusions

In this work we have attempted to map out the phase structure of supersymmetric Sp(2Nc)

gauge theories with 2Nf fundamentals, an adjoint, and vanishing superpotential. The IR

behavior of this theory has an incredibly rich structure and has previously been difficult

to analyze. Using a-maximization, however, we have been able to check the conjectures

of [29] as well as look for evidence that the theory enters a mixed phase below some value

of Nf . We have not found any such evidence in the simplest known dual descriptions of the

theory. It is thus tempting to believe (though far from proven) that the original electric

description of the theory is a good description for all Nc and Nf .

A straightforward extension of the present work would be to construct the deconfined

dual descriptions of the SU(Nc) version of this theory and perform a similar analysis. It

would also be quite interesting to find dual descriptions of these theories in which the op-

erators TrA2k appear as elementary fields so that one could better understand the way in

which they decouple from the theory. More generally, it would be interesting to find new

examples of theories that possess mixed phases (as in [18]) so that one could better under-

stand and classify the situations under which they can occur. These possible directions are

left to future work.
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